锂离子电池正极材料锰酸锂合成的动力学*

赵铭姝 翟玉春 田彦文

(东北大学材料与冶金学院,沈阳 110004)

摘要 用 DTA 和 XRD 方法研究空气气氛中合成锰酸锂的反应过程,利用 Doyle-Ozawa 法和 Kissinger 法计算出 各反应阶段的表观活化能,依次为 66.3、72.6、128.1 和 113.9 kJ·mol⁻¹.用 Kissinger 法确定每个反应阶段的反 应级数、频率因子和动力学方程.由 LiOH·H₂O 和 MnO₂ 合成尖晶石型锰酸锂的动力学,可为制备锰酸锂提供理 论依据.XRD、SEM 和粒度分析表明,理论优化工艺后合成的 LiMn₂O₄ 物相纯净,形貌规整,颗粒分布均匀.

关键词: 锂离子电池, 锰酸锂, 合成动力学, 微观表征 中图分类号: O646.21

锂离子电池是继镍镉电池、镍氢电池之后的第 三代可充电"绿色电池".其工作电压高,比能量 大,循环寿命长,重量轻,自放电少,无记忆效应. 目前研究较多的正极材料是三种富锂的过渡金属 氧化物,锂钴系、锂镍系和锂锰系化合物^[1-2]. 钴酸 锂电池的耗钴量较大. 锂镍系正极材料的合成相 当困难.尖晶石型锰酸锂具有合成成本低,无环境 污染,放电工作平台稳定,电化学比容量利用率高 等优点^[3-4].鉴于我国富锰贫钴的资源现状,且锰的 价格十分便宜,研究开发以锰为主的嵌锂正极材料 替代钴酸锂有着重大的使用价值和广阔的应用前 景.关于锰酸锂合成的动力学研究,国内外尚未见 详尽的报导,研究锰酸锂合成的动力学参数,可为 制备锰酸锂提供重要的理论依据.

本工作克服了差热分析过程中试样温度在产 生热效应期间与程序温度间的偏离及试样内部存 在温度梯度等缺点,在程序控温下,测量被测样和 参比物的温差与温度的关系.采用四种不同的升 温速率分别测试试样的 DTA 曲线,研究锰酸锂在 空气气氛下动态合成过程中的动力学参数.

1 实验

1.1 DTA 和 XRD

LiOH · H₂O 和 MnO₂ 均为分析纯,取其摩尔配 比为 0.65 : 0.35 的样品球磨混合后置于 150 μ L 的 铂坩埚内,实验在流量为~25 mL · min⁻¹ 动态的空 气气氛中进行,仪器型号为瑞典 METTLER TOLE-DOSTAR^e System.

根据 DTA 曲线, 空气气氛中将 LiOH · H₂O 和 MnO₂ 分别在四个峰的峰尾温度 440、620、880 和 1120 K 恒温加热 30 min 取出急冷后做 XRD 分析. 设备为日本理学 RIGAKU/MAX-3B 型 X 射线衍射 仪,利用 Ni-filter, Cu K (50 mA)反射测得,半宽值 的扫描速率与步长分别为 10° · min⁻¹ 和 0.02°.

1.2 试样制备

将 LiOH · H₂O 和 MnO₂ 按摩尔比称料,研磨压 块后放入刚玉舟内,置于 Fe-Cr-Al 丝卧式炉中,利 用 Ni-Cr/Ni-Si 热电偶,采用 WZK 型可控硅温度仪 控温,根据 DTA 分析,在一定的升温速度下处理, 反应结束后冷却至室温取出试样。

1.3 物性表征

将合成的锰酸锂在 RIGAKU/MAX-3B 型 X 射 线 衍 射 仪 下 进 行 测 试 . 通 过 高 压 使 试 样 在 JFC-1100E 型离子溅射仪中的真空度达到 10⁻⁶ Pa, 在样品表面上喷一层金膜,置于日本 JSM-5800 型 扫描电镜下观察.用丙酮(分析纯)均匀分散合成

的试样,在英国 Malvern 激光粒度分布测试仪下检测其粒度分布.

2 结论与讨论

2.1 锰酸锂合成的动力学

升温速率为 2、5、10 和 15 K · min⁻¹ 的 DTA 曲 线见图 1. 在四次 DTA 测量中,曲线上都出现了三 个吸热峰和一个放热峰.用 Doyle-Ozawa 法^[5]和 Kissinger 法^[6]测定合成锰酸锂的动力学参数.

根据 Doyle-Ozawa^[5]法,在一定的反应度 α 下, 据 $\lg\beta = -0.4567 E/RT + ...$,作每个峰的 $\lg\beta ~$ 1/T图,由直线的斜率 – 0.4567 *E*/*R* 计算合成锰 酸锂的各个反应阶段的活化能 *E*,见表 1,同时还列 出了相关系数 *r*.

实验测得了不同升温速率下的各个吸热峰和 放热峰的峰值温度,根据 Kissinger 法^[6],以 $\ln(\beta/T_{max}^2)$ 对 $1/T_{max}$ 作图(T_{max} 为峰值温度),通过直线斜 率 - E/R 计算每个峰的活化能,依据峰形指数的 定义推算反应级数.Kissinger^[6] 假定差热曲线上峰 值温度 T_{max} 处的反应速率最大,并且遵守动力学方 程式 故

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \frac{A}{\beta} \exp\left(-\frac{E}{RT}\right) (1-\alpha)^{\mathrm{p}} \tag{1}$$

在 Tmax 处有

$$\frac{\mathrm{d}}{\mathrm{d}T} \left(\frac{\mathrm{d}\alpha}{\mathrm{d}T} \right) = 0 \tag{2}$$

将式(1)代入式(2)得

$$\frac{E}{RT_{\max}^2} = \frac{An}{\beta} (1 - \alpha_{\max})^{r-1} \exp\left(-\frac{E}{RT_{\max}}\right)$$
(3)

n=1 ,有

$$\frac{E}{RT_{\max}^2} = \frac{A}{\beta} \exp\left(-\frac{E}{RT_{\max}}\right) \tag{4}$$

 $n \neq 0, n \neq 1$, $\not \models$

$$n(1 - \alpha_{\max})^{r-1} \approx 1 + (n-1)\left(\frac{2RT_{\max}}{E}\right)$$
 (5)

因 $(n-1)(2RT_{max}/E) \ll 1$,上式近似为 $n(1-\alpha_{max})^{n-1} \approx 1$ (6)

将式(6)代入式(3),得到与式(4)相同的近似 式.前面公式中 α 是反应度, β 为升温速率.本文

表 1 每个峰不同反应度(α)对应的活化能 E 及线性相关系数 r

Table 1	Activation energies	E and	l linear	relation	coefficients	r at di	ifferent	reaction	degree	α)	of	each	peal	ζ
---------	---------------------	-------	----------	----------	--------------	---------	----------	----------	--------	----	----	------	------	---

	E_1		E_2		E_3		E_4	
a(%)	kJ · mol ⁻¹	r	$kJ \cdot mol^{-1}$	r	$kJ \cdot mol^{-1}$	r	$kJ \cdot mol^{-1}$	r
10	61.0	0.991	44.9	0.995	89.7	0.956	141.5	0.936
20	63.9	0.991	52.6	0.991	87.5	0.948	139.1	0.929
30	68.4	0.993	61.2	0.987	88.1	0.944	135.5	0.943
40	70. 9	0.993	70.5	0. 985	91.2	0.942	131.3	0.964
50	72.5	0.993	79.6	0.984	96.6	0.942	127.2	0.982
60	72.9	0.993	86.9	0.983	104.3	0.943	123.3	0.992
70	72.2	0.994	90.3	0.979	114.8	0.944	120.1	0.994
80	70.4	0.994	88.4	0.973	128.4	0.944	117.8	0.994
90	67.7	0.994	81.4	0.962	145.8	0.942	116.5	0.996
100	64.3	0.995	71.5	0.950	167.9	0.934	116.4	0.999

表 2	不同升温速率下的峰值温度	T _{max} 、峰形指数	I、活化能	E、反应级数	n 及频率因子	A
-----	--------------	------------------------	-------	--------	---------	---

Table 2 Peak maximum temperature T_{max} , peak shape index I, activation energy E,

reaction order n and frequency factor A at different heating rates

Peak						
number	$\beta/K \cdot \min^{-1}$	2	5	10	15	
	$T_{\rm max}/{ m K}$	360. 73	374.46	383.11	394.19	
	Ι	0.477	0.633	0.857	1.091	
No. 1	n	0.870	1.003	1.166	1.316	$n_{\rm av} = 1.090$
	$10^{-6} \cdot A$	3.87	4.10	4.92	3.96	$A_{\rm av} = 4.21$
			E = 64.2	K = -7.719	r = -0.993	
	$T_{\rm max}/{ m K}$	499.42	520.12	601.54	584.05	
	Ι	1.34	0.481	0.795	0.933	
No. 2	n	1.459	0.874	1.123	1.217	$n_{\rm av} = 1.168$
	$10^{-4} \cdot A$	4.54	5.22	1.21	1.32	$A_{\rm av} = 3.07$
			E = 72.6	K = -8.728	r = -0.945	
	$T_{\rm max}/{ m K}$	786.24	834.82	842.58	851.98	
	Ι	0.448	0.572	0.771	0.873	
No. 3	n	0.844	0.953	1.107	1.177	$n_{\rm av} = 1.020$
	$10^{-6} \cdot A$	3.91	2.39	3.87	4.52	$A_{\rm av} = 3.67$
			E = 144.8	K = -17.415	r = -0.940	
	$T_{ m max}/ m K$	936.19	1028.25	1043.56	1076.02	
	Ι	2.526	0.805	1.244	1.619	
No. 4	n	2.002	1.131	1.405	1.603	$n_{\rm av} = 1.535$
	$10^{-2} \cdot A$	1.97	1.28	2.09	2.07	$A_{\rm av} = 1.85$
			E = 100.9	K = -1.214	r = -0.995	

The unti of E is kJ·mol⁻¹. K is the line slope and r is linear related coefficient

表 3 由 Doyle-Ozawa 法和 Kissinger 法计算的各个峰的表观活化能

Table 3 Activation energy calculated with Doyle-Ozawa method and Kissinger method

Method	$E E (End. 1)/kJ \cdot mol^{-1}$	$E E (End. 2)/kJ \cdot mol^{-1}$	$E (End. 3)/kJ \cdot mol^{-1}$	$E (Exo.)/kJ \cdot mol^{-1}$
Doyle-Ozawa	68.4	72.7	111.4	126.9
Kissinger	64.2	72.6	144. 8	100. 9
Average	66.3	72.6	128.1	113.9

采用式(4)计算频率因子 A. 动力学参数见表 2.

利用 Doyle-Ozawa 法和 Kissinger 法计算每个 峰的表观活化能,取平均值,每个峰的平均表观活 化能见表 3.

按非等温过程求取动力学参数后,进一步判断 反应机制.Satanva^[7]认为:假设在无限小的时间间 隔内,非等温过程看成是等温过程,则等温过程的 通式表示反应速率.根据质量作用定律、Arrhenius 公式和表 3,四个峰的速率方程分别为

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = 4.21 \times 10^6 \ e^{-\frac{6.63 \times 10^4}{RT}} (1 - \alpha)^{1.090}$$

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = 3.\ 07 \times 10^4 \ e^{-\frac{7.26 \times 10^4}{RT}} (1 - \alpha)^{1.168}$$
$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = 3.\ 67 \times 10^6 \ e^{-\frac{1.28 \times 10^4}{RT}} (1 - \alpha)^{1.020}$$
$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = 1.\ 85 \times 10^2 \ e^{-\frac{1.14 \times 10^4}{RT}} (1 - \alpha)^{1.535}$$

四个峰所处的温度范围大致在 334~440 K、450~620 K、760~880 K 和 920~1120 K.

2.2 合成过程中的 XRD 分析

LiMn₂O₄ 合成中的 XRD 见图 2. 由图 1 和图 2 分析,整个升温过程中存在以下三个反应过程:

Fig. 2 XRD patterns during the process of synthesizing LiMn₂O₄ a)440 K, b)620 K, c)880 K, d)1120 K

图 3 LiMn₂O₄ 试样的 XRD 图谱 Fig. 3 XRD patterns of LiMn₂O₄ sample

(1)脱水阶段

 $LiOH \cdot H_2O \rightarrow LiOH + H_2O(g) \uparrow$

(2)分解阶段

 $LiOH \rightarrow Li_2O + H_2O(g) \uparrow$

(3)合成阶段

 $Li_2O + MnO_2 + O_2 \rightarrow LiMn_2O_4$

2.3 物相微观结构

为使锰酸锂合成过程中的各个反应充分进行, 在差热分析实验和理论计算的基础上优化工艺,采 用固相分段法^[8]制备尖晶石型锰酸锂.图3和图4

图 4 LiMn₂O₄ 试样的扫描电镜图 Fig. 4 SEM photo of LiMn₂O₄ sample

分别给出了试样的 XRD 和 SEM 分析结果. 由图 3 知, LiMn₂O₄ 晶型发育较好,所含的杂质相少,相较 纯. 从图 4 中可以观察到,其形貌较规整,无明显 团聚现象. 粒度分析表明锰酸锂颗粒的粒度呈正 态分布.

3 结 论

(1)动态空气气氛中,采用不同的升温速率对 锰酸锂的合成进行 DTA 测试,表明存在三个吸热

万方数据

峰和一个放热峰.结合 XRD 分析, LiOH·H₂O和 MnO₂合成 LiMn₂O₄的反应过程分为三个阶段:一 水合氢氧化锂脱水阶段、氢氧化锂分解阶段和合成 锰酸锂阶段.

(2)利用 Doyle-Ozawa 法和 Kissinger 法分别计 算每个峰的表观活化能,取平均值,结果分别为: 66.3 kJ·mol⁻¹、72.6 kJ·mol⁻¹、128.1 kJ·mol⁻¹和 113.9 kJ·mol⁻¹.

(3)利用 Kissinger 法计算每个峰的峰形指数、 反应级数和频率因子,结合表观活化能,给出每个 峰的速率方程.

(4) XRD、SEM 和粒度分析结果表明, 在 DTA 的基础上,利用固相分段法制备的尖晶石型锰酸锂 物相纯净,晶体形貌规整,颗粒分布均匀.

References

1 Dahn J R, Von S U, Juskow M W, Al-Janaby H. J Electro-

chemi. Soc., 1991, 138: 2207

- Pistonia G, Antonini A, Zane D. Solid State Ionics, 1995, 78: 115
- Lee Y S, Sun Y K, Nahm K S. Solid State Ionics, 1998, 109: 285
- Zhao MS, Zhang GF, Zhai YC, Tian YW. Chinese Journal of Power Sources, 2001, 25(3): 246 [赵铭姝, 张国范, 翟玉春, 田彦文. 电源技术(Dianyuan Jishu), 2001, 25(3): 246]
- 5 Cai ZQ. Thermoanalyser. Beijing: Higher Education Press, 1993, 68: 113 [蔡正千. 热分析. 北京: 高等教育出版社, 1993, 68: 113]
- Yu BL, Jiang JD. Practical Thermoanalyser. Beijing: Textile Industry Press, 1990: 151, 168, 208, 54 [于伯龄, 姜胶东. 实 用热分析. 北京: 纺织工业出版社, 1990: 151, 168, 208, 54]
- 7 Zhou H, Zeng WM. The Chinese Journal of Nonferrous Metals.
 1993, 3(1): 40 [周 红, 曾文明. 中国有色金属学报(Zhongguo Yousejinshu Xuebao), 1993, 3(1): 40]
- 8 Zhao MS, Zhai YC, Tian YW. Chinese Journal of Process
 Engineering, 2001, 1(4):402 [赵铭姝, 翟玉春, 田彦文. 过
 程工程学报 Guocheng Gongcheng Xuebao), 2001, 1(4):402]

Study on Kinetics of Synthesizing Spinel LiMn₂O₄ for Lithium-ion Battery Cathode*

Zhao Ming-ShuZhai Yu-ChunTian Yan-Wen(School of Material and Metallurgy, Northeastern University, Shenyang110004)

Abstract The reaction processes including synthesis of $LiMn_2O_4$ with $LiOH \cdot H_2O$ and MnO_2 were studied by means of DTA under atmosphere pressure, and the result obtained could be applied as an important theoretical basis for preparing $LiMn_2O_4$. Table 1 ~ 3 show the activation energies of each reaction process obtained by using Doyle-Ozawa method and Kissinger method as follows : 66. 3, 72. 6, 128. 1 and 113. 9 kJ · mol⁻¹. Reaction orders and frequency factors were determined by making use of Kissinger method. And the kinetic equations of each reaction were deduced. X-ray diffraction patterns (XRD), scanning electron microscope (SEM) result and size distribution measurements Fig. 3 ~ 4 show that the synthesized $LiMn_2O_4$ possesses pure phase, regular appearance and normal distribution.

Keywords: Lithium-ion battery, LiMn₂O₄, Synthesizing kinetics, Micro-characters

Vol. 18

Received: July 23, 2001; Revised: October 23, 2001. Correspondent: Zhao Ming-Shu(E-mail: zhaomshu@163. net). *The Project 方方数据 Supported by the Natural Science Foundation of Liaoning Province(9810300702) and the Northeastern University Ph. D. Thesis Fund

锂离子电池正极材料锰酸锂合成的动力学

作者:	赵铭姝, 翟玉春, 田彦文
作者单位:	东北大学材料与冶金学院,沈阳,110004
刊名:	物理化学学报 <mark>ISTIC SCI PKU</mark>
英文刊名:	ACTA PHYSICO-CHIMICA SINICA
年,卷(期):	2002, 18(2)
被引用次数:	12次

参考文献(8条)

- 1.赵铭姝;翟玉春;田彦文 固相分段法制备锂离子电池正极材料L i Mn204的实验[期刊论文]-过程工程学报 2001(04)
- 2. 周红;曾文明 查看详情[期刊论文]-中国有色金属学报 1993(01)
- 3. 于伯龄;姜胶东 实用热分析 1990
- 4. 蔡正千 热分析 1993
- 5.赵铭姝;张国范;翟玉春;田彦文 锂离子蓄电池正极材料尖晶石型锰酸锂的制备[期刊论文]-电源技术 2001(03)
- 6.Lee Y S;Sun Y K;Nahm K S Synthesis of spinel LiMn204 cathode material prepared by an adipic acid-
- assisted sol-gel method for lithium secondary batteries[外文期刊] 1998(3/4)
- 7. Pistonia G; Antonini A; Zane D SYNTHESIS OF LIMNO2 AND ITS CHARACTERIZATION AS A CATHODE FOR RECHARGEABLE
- LI CELLS [外文期刊] 1995(1/2)
- 8. Dahn J R; Von S U; Juskow M W; Al Janaby H 查看详情 1991

引证文献(12条)

- 1. 阮艳莉. 唐致远 LiFeP04的合成及其热分析动力学[期刊论文]-物理化学学报 2008(5)
- 2. 杜国栋. 努丽燕娜. 冯真真. 王久林. 杨军 LiNi0. 5Mn1. 504-xFx高电压电极高温保存下的电化学行为[期刊论文]-物理化学

学报 2008(1)

- 3. 李智敏. 杜红亮. 苏晓磊. 罗发. 朱冬梅. 周万城 LiMn204正极材料的合成及循环稳定性[期刊论文]-硅酸盐学报 2006(11)
- 4. 李智敏. 仇卫华. 曹全喜 固相合成锰酸锂的反应动力学研究[期刊论文] 功能材料与器件学报 2006(1)
- 5. 张爱波 锂离子电池正极材料LiCo<, x>Ni<, 1-x>0<, 2>的研究[学位论文]博士 2006
- 6.赵铭姝. 汪飞. 宋晓平 锂离子电池正极材料锰钴酸锂的表征与分解动力学[期刊论文]-中国有色金属学报 2005(9)
- 7. 刘宽 纳米LiMn204的溶胶-凝胶合成及表征[期刊论文]-燕山大学学报 2005(1)
- 8. 文衍宣. 周开文. 栗海锋. 童张法 空气中LiMn204的热分解动力学[期刊论文]-无机材料学报 2005(2)
- 9. 文衍宣. 周开文. 薛敏华. 刘自力 氧气中嵌氧生成LiMn204的动力学[期刊论文]-中国锰业 2004(3)
- 10. 叶乃清. 刘长久. 沈上越 锂离子电池正极材料LiNi02存在的问题与解决办法[期刊论文]-无机材料学报 2004(6)
- 11. 李智敏. 仇卫华. 胡环宇. 赵海雷. 高长贺 锂离子电池正极材料锰酸锂的优化合成[期刊论文]-无机材料学报 2004(2)
- 12. 张胜涛. 崔晏. 伍明军 锂离子电池正极材料尖晶石型锰酸锂的制备[期刊论文]-重庆职业技术学院学报 2004(2)

本文链接: http://d.g.wanfangdata.com.cn/Periodical_wlhxxb200202020.aspx